

amazon

science

Causal Information Splitting:

Bijan Mazaheri^{1,2} Atalanti Mastakouri² Dominik Janzing² Michaela Hardt²

¹California Institute of Technology ²Amazon Causality Lab, Tübingen Germany

Environmental Robustness

Distribution Shift

Selection Diagrams (Pearl and Bareinboim, 2011)

Stable Paths (Subbaswamy and Saria, 2018)

We want to train models to minimize an error function within a testing distribution ($\mathbf{X}_{\text{TEST}}, Y_{\text{TEST}}$).

If $(\mathbf{X}_{\text{TRAIN}}, Y_{\text{TRAIN}}) \sim (\mathbf{X}_{\text{TEST}}, Y_{\text{TEST}})$, we can do empirical risk minimization:

$$f = \arg\min_{f} \mathbb{E}_{\mathbf{x} \sim \mathbf{X}_{\text{TRAIN}}, y \sim Y_{\text{TRAIN}} | \mathbf{X}_{\text{TRAIN}} [\text{Err}(f(\mathbf{x}), y)]$$
(1)

If $(\mathbf{X}_{\text{TRAIN}}, Y_{\text{TRAIN}}) \not\sim (\mathbf{X}_{\text{TEST}}, Y_{\text{TEST}})$, we have distribution/dataset shift.

Covariate shift re-weighting techniques require invariance in the label function (Shimodaira, 2000; Sugiyama et al., 2008)

 $\Pr(Y_{\text{TEST}} \mid \mathbf{X}_{\text{TEST}}) = \Pr(Y_{\text{TRAIN}} \mid \mathbf{X}_{\text{TRAIN}})$ (2)

This is not always true! We can instead search for an *invariant set* with respect to the label function. (Magliacane et al., 2018; Muandet,

 $X = \{Career Interests, Employment\}$ is an invariant set because it *d*-separates Pandemic and Income.

Subbaswamy and Saria, 2018 suggest restricting to stable paths. Career Interests \rightarrow Education is not stable (unless Career Interests are included in **X**). But it still helps!

No invariant set if **Career Interests** and **Employment** are unobserved.

Imperfect Environmental Robustness

Problem Setup Provy Classification Proxy Classification Proxy Classification Proxy Classification M₁ M₂ M₁ M₂ M₁ M₂ M₃ Hidden direct causes and effects U Visible downstream proxies V

Goals:

We want to find ${f X}$ that generally:

1) Minimizes a quantitative notion of robustness, called *context sensitivity*: $\mathcal{I}(\mathbf{M} : Y \mid \mathbf{X})$

2) Maximizes predictive potential, called *relevance*: $\mathcal{I}(Y : \mathbf{X})$.

Good proxies decrease context sensitivity: $\mathcal{I}(\mathbf{M} : Y \mid \mathbf{X} \cup \{V\}) \leq \mathcal{I}(\mathbf{M} : Y \mid \mathbf{X})$ Bad proxies increase context sensitivity: $\mathcal{I}(\mathbf{M} : Y \mid \mathbf{X} \cup \{V\}) > \mathcal{I}(\mathbf{M} : Y \mid \mathbf{X})$ Ambiguous proxies could do either.

We develop *one setting* with both graphical and functional constraints where we have clean definitions for these concepts.

Techniques

Post-selecting on Y

Key Idea: Conditioning on Y *d*-Separates **good proxies** and **bad proxies**. This allows for *proxy bootstrapping*, which determines good vs bad proxies. We want to use $\mathbf{X} = \{V_G, V_A^{(G)}\}$ but $V_A^{(G)}$ is mixed in as a component of V_A , which is ambiguous. We use auxiliary training tasks predicting good proxies using ambiguous proxies. $\mathbf{X} = \{V_G, \tilde{F}_{\text{ISO}(V_G)}(V_A)\}$ where $\tilde{F}_{\text{ISO}(V_G)}(V_A)$ predicts V_G using V_A under constant Y.

Experimental Results

Synthetic Data	Real World Data
Varying $\sigma(M_G)$ Varying $\sigma(M_B)$	Table: Comparison of out-of-domain (2021) performance via mean

Causal Information Splitting

References

Magliacane, Sara et al. (2018). ``Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions.'' In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. NIPS'18. Montréal, Canada: Curran Associates Inc., pp. 10869–10879.

Muandet, Krikamol, David Balduzzi, and Bernhard Schölkopf (2013). ``Domain generalization via invariant feature representation.'' In: International conference on machine learning. PMLR, pp. 10–18.

Pearl, Judea and Elias Bareinboim (2011). ``Transportability of causal and statistical relations: A formal approach." In: Twenty-fifth AAAI conference on artificial intelligence.

Rojas-Carulla, Mateo et al. (2018). ``Invariant models for causal transfer learning.'' In: *The Journal of Machine Learning Research* 19.1, pp. 1309–1342.

Shimodaira, Hidetoshi (2000). ``Improving predictive inference under covariate shift by weighting the log-likelihood function." In: Journal of statistical planning and inference 90.2, pp. 227–244.

Subbaswamy, Adarsh and Suchi Saria (2018). ``Counterfactual Normalization: Proactively Addressing Dataset Shift Using Causal Mechanisms..'' In: UAI, pp. 947–957.

Sugiyama, Masashi et al. (2008). ``Direct importance estimation for covariate shift adaptation." In: Annals of the Institute of Statistical Mathematics 60.4, pp. 699–746.