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Environmental Robustness

Distribution Shift

Wewant to train models to minimize an error function within a testing

distribution (XTEST, YTEST).
If (XTRAIN, YTRAIN) ∼ (XTEST, YTEST), we can do empirical risk mini-

mization:

f = arg min
f

Ex∼XTRAIN,y∼YTRAIN|XTRAIN[Err(f (x), y)] (1)

If (XTRAIN, YTRAIN) 6∼ (XTEST, YTEST), we have distribution/dataset

shift.

Covariate shift re-weighting techniques require invariance in the label

function (Shimodaira, 2000; Sugiyama et al., 2008)

Pr(YTEST | XTEST) = Pr(YTRAIN | XTRAIN) (2)

This is not always true! We can instead search for an invariant set

with respect to the label function. (Magliacane et al., 2018; Muandet,

Balduzzi, and Schölkopf, 2013; Rojas-Carulla et al., 2018)

Selection Diagrams (Pearl and Bareinboim, 2011)
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X = {Career Interests,Employment} is an invariant set because it d-
separates Pandemic and Income.

No invariant set if Career Interests and Employment are unobserved.

Stable Paths (Subbaswamy and Saria, 2018)
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Subbaswamy and Saria, 2018 suggest restricting to stable paths.

Career Interests → Education is not stable (unless Career Interests

are included in X). But it still helps!

Imperfect Environmental Robustness

Problem Setup
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Goals:

We want to find X that generally:

1) Minimizes a quantitative notion of robustness, called context sensitivity: I(M : Y | X)
2) Maximizes predictive potential, called relevance: I(Y : X).

Proxy Classification
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Good proxies decrease context sensitivity: I(M : Y | X ∪ {V }) ≤ I(M : Y | X)
Bad proxies increase context sensitivity: I(M : Y | X ∪ {V }) > I(M : Y | X)
Ambiguous proxies could do either.

We develop one setting with both graphical and functional constraints where we have clean definitions

for these concepts.

Techniques

Post-selecting on Y

M1

U1

V1 V2 V3 V4 V5 V6 V7

U2

M2

U3

M3

Y

CH(U1)

CH(U2)CH(U3)

V1

V4V7

V2 V3

V5

V6

Key Idea: Conditioning on Y d-Separates good proxies and bad proxies.

This allows for proxy bootstrapping, which determines good vs bad proxies.

Causal Information Splitting
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We want to use X = {VG, V
(G)
A } but V

(G)
A is mixed in as a component of VA, which is ambiguous.

We use auxiliary training tasks predicting good proxies using ambiguous proxies.

X = {VG, F̃ISO(VG)(VA)} where F̃ISO(VG)(VA) predicts VG using VA under constant Y .

Experimental Results

Synthetic Data
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RealWorld Data
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All Features: X = {E, C, MS}
Engineered Features: X = {E, F̃ISO(E)(C, MS)}
Limited Features: X = {E}

Table: Comparison of out-of-domain (2021) performance via mean

of accuracy.

State All Features Engineered Features Limited Features

CA 0.712 ± 0.0011 0.711 ± 0.0014 0.692 ± 0.0014

FL 0.683 ± 0.0012 0.678 ± 0.0018 0.680 ± 0.0013

GA 0.689 ± 0.0025 0.707 ± 0.0055 0.709 ± 0.0029

IL 0.662 ± 0.0026 0.689 ± 0.0033 0.684 ± 0.0019

NY 0.707 ± 0.0022 0.702 ± 0.0025 0.687 ± 0.0080

NC 0.691 ± 0.0031 0.684 ± 0.0034 0.683 ± 0.003

OH 0.689 ± 0.0022 0.703 ± 0.0040 0.696 ± 0.0029

PA 0.672 ± 0.0017 0.695 ± 0.0023 0.688 ± 0.0022

TX 0.690 ± 0.0029 0.712 ± 0.0028 0.712 ± 0.0027

avg 0.688 0.698 0.692
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