

Causal Inference Despite Limited Global Confounding via Mixture Models

PAPER

Spencer Gordon¹ Bijan Mazaheri¹ Yuval Rabani² Leonard Schulman¹

¹California Institute of Technology ²The H

²The Hebrew University of Jerusalem

Setup	Task	Motivation	Previous Work
 G' A Bayesian Network is a directed acyclic graph (DAG) G = (V, E). A Bayesian Network Distribution on n random variables V is Markovian on Bayesian Network G. A k-mixture of such distributions (k-MixBND) is represented using one additional vertex U with CH(U) = V. 	Knowns:• The marginal probability distribution on V: $\Pr(\mathbf{V}) = \sum_{u \in U} \Pr(u) \Pr(\mathbf{V} \mid u)$ $\Pr(\mathbf{V}) = \sum_{u \in U} \Pr(u) \Pr(\mathbf{V} \mid u)$ Unknowns:• The probability distribution on U , i.e. $\Pr(u)$ for $u \in \{1, \ldots, k\}$.• The within source probability distribution $\Pr(\mathbf{V} \mid u) = \mathcal{P}_u(\mathbf{V})$ for $u \in \{1, \ldots, k\}$.• $\mathcal{P}_u(\mathbf{V})$ is a Bayesian network distribution, so it suffices to find $\mathcal{P}_u(V \mid \mathbf{pa}(V))$ for all $V \in \mathbf{V}$, and assignments $\mathbf{pa}(V)$ to $\mathbf{PA}(V)$.	 Setting emerges when combining multiple -Populations -Environments -Datasets Graphically, the causal relationships are considered unidentifiable. Interventional probabilities <i>can</i> be calculated using the <i>within source</i> distributions, Pr(V u). Solving the mixture model allows for a degree of deconfounding. 	 Using 3-independent variabls and larger alphabets (linear in k): E. S. Allman, 2009 use algebraic methods to exploit within-source independence. Anandkumar, Hsu, and Kakade, 2012 follows a similar strategy using tensor decomposition. Wang and Blei, 2019 introduced deconfounders using multiple causes. Criticized in Ogburn, Shpitser, and Tchetgen, 2019 and D'Amour, 2019 Criticism is linked to the difference between learning parameters that generate similar statistics and identification of the true parameters.

Reduction to *k***-MixProd**

Difficulties

Assumptions

- The conditional probability distribution I | COND is an instance of k-MixProd on the independent set I.
- We will create many such instances (called "runs") and stitch together the results. These runs will need to:
- 1. Cover all of the variables and assignments to their parents .
- 2. Be **alignable** with eachother so their results can be synthesized.
- Runtime of k-MixBND: $n2^{\Delta^2}$ executions of k-MixProd where Δ is a bound on the degree of \mathcal{G} .
- Runtime of k-MixProd: $2^{\mathcal{O}(k^2)}n^{\mathcal{O}(k)}$ in Gordon et al., 2021 and $2^{\mathcal{O}(k\log(k))}n^{\mathcal{O}(k)}$ in upcoming work.
- k-MixProd is symmetric to permutations in the labels of U.
 Solution: Alignment variables
- Conditioning (via post-selection) limits the variables whose information we have access to. How can we ensure we have obtained all of the necessary information?

Solution: "Good sets of runs" and alignment spanning trees

- The parameters returned from k-MixProd instances are of the form $\mathcal{P}_u(V \mid \mathbf{mb}(V))$ -- we want them of the form $\mathcal{P}_u(V \mid \mathbf{pa}(V))$ (which is standard for Bayesian networks). Solution: Bayesian unzipping
- 1. We have access to a k-MixProd oracle requiring O(k) variables that are independent within each source.
- 2. The observable variables in our BND are binary and discrete.Extensions exist for larger alphabets.
- 3. The mixture is supported on $\leq k$ sources.
- 4. The underlying Bayesian DAG is sufficiently sparse.
 - The algorithm works if $n \ge (\Delta + 1)^4 N_{\rm mp}$
 - Milder requirements exist for specific graphs.
- 5. The resulting product mixtures are non-degenerate.
- 6. The DAG structure ${\cal G}$ is known.
 - Upcoming work on how to do causal discovery to learn \mathcal{G} .

Alignment of Source Labels

- Runs a and b are aligned at X_1 , allowing $U^{(a)}$ and $U^{(b)}$ to be aligned.
- To ensure we have a "good collection of runs," any two runs must be alignable via a chain of alignment variables - i.e. we must have an alignment spanning tree.

Change the assignments to Markov boundaries while leaving at least one Disjoint Markov boundaries ensure that a single variable can be swapped assignment the same.

Bayesian Unzipping: $Pr(V \mid MB(V)) \rightarrow Pr(V \mid PA(V))$

Let y^0 denote ``y = 0" and y^1 denote ``y = 1".

 $\mathcal{P}_u(y^1 \mid \mathsf{mb}(Y)) = \frac{\mathcal{P}_u(y^1, \mathsf{mb}(Y))}{\mathcal{P}_u(y^1, \mathsf{mb}(Y)) + \mathcal{P}_u(y^0, \mathsf{mb}(Y))}$

We apply the standard factoring,

 $\mathcal{P}_u(y,\mathsf{mb}(Y)) = \mathcal{P}_u(v_1, v_2, v_3) \mathcal{P}_u(y \mid v_1, v_2) \mathcal{P}_u(v_4 \mid y, v_3) \mathcal{P}_u(v_5 \mid y, v_4),$

to all three terms.

 $\mathcal{P}_{u}(y^{1} \mid v_{1}, v_{2})\mathcal{P}_{u}(v_{4} \mid y^{1}, v_{3})\mathcal{P}_{u}(v_{5} \mid y^{1}, v_{4})$ $\mathcal{P}_{u}(y^{1} \mid v_{1}, v_{2})\mathcal{P}_{u}(v_{4} \mid y^{1}, v_{3})\mathcal{P}_{u}(v_{5} \mid y^{1}, v_{4})) + \mathcal{P}_{u}(y^{0} \mid v_{1}, v_{2})\mathcal{P}_{u}(v_{4} \mid y^{0}, v_{3})\mathcal{P}_{u}(v_{5} \mid y^{0}, v_{4}))$

• $\mathcal{P}_u(v_1, v_2, v_3)$ appears in both numerator and denominator, so it cancels out.

- If we traverse in **reverse topological order**, then $\mathcal{P}_u(v_4 \mid y, v_3)$ and $\mathcal{P}_u(v_5 \mid y, v_4)$ terms are previously calculated for both $y \in \{y^0, y^1\}$.
- $\mathcal{P}_u(y^0 \mid v_1, v_2) + \mathcal{P}_u(y^1 \mid v_1, v_2) = 1$, so we can solve for green terms.
- Iterating this process incurs instability proportional to the depth of the graph.
 - This can be avoided by not conditioning on the children of the deepest variables in the independent set.

References

Anandkumar, A., D. J. Hsu, and S. M. Kakade (2012). ``A Method of Moments for Mixture Models and Hidden Markov Models''. In: *Proc. 25th Ann. Conf. on Learning Theory - COLT.* Vol. 23. JMLR Proceedings, pp. 33.1–33.34. URL: http://proceedings.mlr. press/v23/anandkumar12/anandkumar12.pdf.

- D'Amour, Alexander (2019). ``Comment: Reflections on the deconfounder''. In: Journal of the American Statistical Association 114.528, pp. 1597–1601.
- E. S. Allman C. Matias, J. A. Rhodes (2009). ``Identifiability of parameters in latent structure models with many observed variables''. In: Ann. Statist. 37.6A, pp. 3099–3132. DOI: 10.1214/09–A0S689.

Gordon, S. L. et al. (2021). ``Source Identification for Mixtures of Product Distributions''. In: Proc. 34th Ann. Conf. on Learning Theory - COLT. Vol. 134. Proc. Machine Learning Research. PMLR, pp. 2193–2216. URL: http://proceedings.mlr.press/v134/ gordon21a.html.

- Ogburn, Elizabeth L, Ilya Shpitser, and Eric J Tchetgen Tchetgen (2019). ``Comment on "blessings of multiple causes"''. In: Journal of the American Statistical Association 114.528, pp. 1611–1615.
- Wang, Y. and D. M. Blei (2019). ``The Blessings of Multiple Causes''. In: Journal of the American Statistical Association 114.528, pp. 1574–1596. DOI: 10.1080/01621459.2019.1686987.