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Problem
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A Bayesian Network is a directed acyclic graph

(DAG) G = (V, E).
A Bayesian Network Distribution on n random

variables V is Markovian on Bayesian Network G.
A k-mixture of such distributions (k-MixBND) is

represented using one additional vertex U with

CH(U) = V.

Task

Knowns:

The marginal probability distribution on V:

Pr(V) =
∑
u∈U

Pr(u) Pr(V | u)

Unknowns:

The probability distribution on U , i.e. Pr(u) for
u ∈ {1, . . . , k}.
The within source probability distribution
Pr(V | u) = Pu(V) for u ∈ {1, . . . , k}.

Pu(V) is a Bayesian network distribution, so it suffices

to find Pu(V | pa(V )) for all V ∈ V, and assignments

pa(V ) to PA(V ).

Motivation

Setting emerges when combining multiple...
-Populations

-Environments

-Datasets

 k < observed support!

Graphically, the causal relationships are considered

unidentifiable.

Interventional probabilities can be calculated using

the within source distributions, Pr(V | u).
Solving the mixture model allows for a degree of

deconfounding.

PreviousWork

Using 3-independent variabls and larger alphabets (lin-

ear in k):

E. S. Allman, 2009 use algebraic methods to

exploit within-source independence.

Anandkumar, Hsu, and Kakade, 2012 follows a

similar strategy using tensor decomposition.

Wang and Blei, 2019 introduced deconfounders
using multiple causes.

Criticized in Ogburn, Shpitser, and Tchetgen, 2019 and

D’Amour, 2019

Criticism is linked to the difference between learning

parameters that generate similar statistics and

identification of the true parameters.

Strategy
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COND :=

{
V2 , V3 , V4 , V7 ,

V8 , V10 , V11 , V12

}

I :=
{

V1 , V6 , V9 , V13

}

"Conditioning set"

"Independent set"

Reduction to k-MixProd

The conditional probability distribution I | COND is an instance of

k-MixProd on the independent set I.
We will create many such instances (called "runs") and stitch together
the results. These runs will need to:
1. Cover all of the variables and assignments to their parents .

2. Be alignable with eachother so their results can be synthesized.

Runtime of k-MixBND: n2∆2
executions of k-MixProd where ∆ is a

bound on the degree of G.
Runtime of k-MixProd: 2O(k2)nO(k) in Gordon et al., 2021 and

2O(k log(k))nO(k) in upcoming work.

Difficulties

k-MixProd is symmetric to permutations in the labels of U .

Solution: Alignment variables

Conditioning (via post-selection) limits the variables whose information

we have access to. How can we ensure we have obtained all of the

necessary information?

Solution: "Good sets of runs" and alignment spanning trees

The parameters returned from k-MixProd instances are of the form

Pu(V | mb(V )) -- we want them of the form Pu(V | pa(V )) (which is

standard for Bayesian networks).

Solution: Bayesian unzipping

Assumptions

1. We have access to a k-MixProd oracle requiring O(k) variables that are
independent within each source.

2. The observable variables in our BND are binary and discrete.
Extensions exist for larger alphabets.

3. The mixture is supported on ≤ k sources.

4. The underlying Bayesian DAG is sufficiently sparse.
The algorithm works if n ≥ (∆ + 1)4Nmp

Milder requirements exist for specific graphs.

5. The resulting product mixtures are non-degenerate.

6. The DAG structure G is known.
Upcoming work on how to do causal discovery to learn G.

Alignment of Source Labels

Alignment Variables

Run a:
U (a) P

u(a)(X1) P
u(a)(X2)

0 .7 .4
1 .3 .6

Run b:
U (b) P

u(b)(X1) P
u(b)(X3)

0 .3 .2
1 .7 .8

Combined:
U Pu(X1) Pu(X2) Pu(X3)
0 .7 .4 .8
1 .3 .6 .2

Runs a and b are aligned at X1, allowing U (a) and U (b) to be aligned.

To ensure we have a "good collection of runs," any two runs must be

alignable via a chain of alignment variables - i.e. we must have an

alignment spanning tree.

Changing the Conditioned Values
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Change the assignments to Markov boundaries while leaving at least one

assignment the same.

Varying the Independent Set
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Disjoint Markov boundaries ensure that a single variable can be swapped

without requiring others in the independent set to be conditioned on.

Bayesian Unzipping: Pr(V | MB(V )) → Pr(V | PA(V ))
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Let y0 denote ``y = 0'' and y1 denote ``y = 1''.

Pu(y1 | mb(Y )) = Pu(y1,mb(Y ))
Pu(y1,mb(Y )) + Pu(y0,mb(Y ))

We apply the standard factoring,

Pu(y,mb(Y )) = Pu(v1, v2, v3)Pu(y | v1, v2)Pu(v4 | y, v3)Pu(v5 | y, v4),
to all three terms.

Pu(y1 | mb(Y )) = Pu(y1 | v1, v2)Pu(v4 | y1, v3)Pu(v5 | y1, v4)
Pu(y1 | v1, v2)Pu(v4 | y1, v3)Pu(v5 | y1, v4)) + Pu(y0 | v1, v2)Pu(v4 | y0, v3)Pu(v5 | y0, v4)

Pu(v1, v2, v3) appears in both numerator and

denominator, so it cancels out.

If we traverse in reverse topological order, then

Pu(v4 | y, v3) and Pu(v5 | y, v4) terms are previously

calculated for both y ∈ {y0, y1}.
Pu(y0 | v1, v2) + Pu(y1 | v1, v2) = 1, so we can solve

for green terms.

Iterating this process incurs instability proportional to
the depth of the graph.

This can be avoided by not conditioning on the children of

the deepest variables in the independent set.
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