Causal Inference Despite Limited Global Confounding via Mixture Models
Spencer Gordon ${ }^{1} \quad$ Bijan Mazaheri ${ }^{1} \quad$ Yuval Rabani $^{2} \quad$ Leonard Schulman ${ }^{1}$
${ }^{1}$ California Institute of Technology $\quad{ }^{2}$ The Hebrew University of Jerusalem
Problem

Setup	Task	Motivation	Previous Work
	Knowns: - The marginal probability distribution on \mathbf{V} : $\operatorname{Pr}(\mathbf{V})=\sum_{u \in U} \operatorname{Pr}(u) \operatorname{Pr}(\mathbf{V} \mid u)$	- Setting emerges when combining multiple... $\left.\begin{array}{l}\text {-Populations } \\ \text {-Environments } \\ \text {-Datasets }\end{array}\right\} k<$ observed support! - Graphically, the causal relationships are considered unidentifiable.	Using 3-independent variabls and larger alphabets (linear in k): - E. S. Allman, 2009 use algebraic methods to exploit within-source independence. - Anandkumar, Hsu, and Kakade, 2012 follows a
- A Bayesian Network is a directed acyclic graph (DAG) $\mathcal{G}=(\mathbf{V}, \mathbf{E})$. - A Bayesian Network Distribution on n random variables \mathbf{V} is Markovian on Bayesian Network \mathcal{G}. - A k-mixture of such distributions (k-MixBND) is represented using one additional vertex U with $\mathrm{CH}(U)=\mathrm{V}$.	- The probability distribution on U, i.e. $\operatorname{Pr}(u)$ for $u \in\{1, \ldots, k\}$. - The within source probability distribution $\operatorname{Pr}(\mathbf{V} \mid u)=\mathcal{P}_{u}(\mathbf{V})$ for $u \in\{1, \ldots, k\}$. - $\mathcal{P}_{u}(\mathbf{V})$ is a Bayesian network distribution, so it suffices to find $\mathcal{P}_{u}(V \mid \mathbf{p a}(V))$ for all $V \in \mathbf{V}$, and assignments $\mathrm{pa}(V)$ to $\mathrm{PA}(V)$.	- Interventional probabilities can be calculated using the within source distributions, $\operatorname{Pr}(\mathbf{V} \mid u)$. - Solving the mixture model allows for a degree of deconfounding.	similar strategy using tensor decomposition. - Wang and Blei, 2019 introduced deconfounders using multiple causes. - Criticized in Ogburn, Shpitser, and Tchetgen, 2019 and D'Amour, 2019 - Criticism is linked to the difference between learning parameters that generate similar statistics and identification of the true parameters.

Strategy

Reduction to k-MixProd

The conditional probability distribution I | COND is an instance of k-MixProd on the independent set I.
We will create many such instances (called "runs") and stitch together the results. These runs will need to

1. Cover all of the variables and assignments to their parents
2. Be alignable with eachother so their results can be synthesized

- Runtime of k-MixBND: $n 2^{\Delta^{2}}$ executions of k-MixProd where Δ is a bound on the degree of \mathcal{G}
- Runtime of k-MixProd: $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ in Gordon et al., 2021 and $2^{\mathcal{O}(k \log (k))_{n} \mathcal{O}(k)}$ in upcoming work.

Difficulties

- k-MixProd is symmetric to permutations in the labels of U Solution: Alignment variables
- Conditioning (via post-selection) limits the variables whose information 2 . we have access to. How can we ensure we have obtained all of the necessary information?
Solution: "Good sets of runs" and alignment spanning trees
- The parameters returned from k-MixProd instances are of the form $\mathcal{P}_{u}(V \mid \mathrm{mb}(V))$-- we want them of the form $\mathcal{P}_{u}(V \mid \mathrm{pa}(V))$ (which is standard for Bayesian networks) Solution: Bayesian unzipping

Assumptions

1. We have access to a k-MixProd oracle requiring $O(k)$ variables that are independent within each source
The observable variables in our BND are binary and discrete - Extensions exist for larger alphabets.
2. The mixture is supported on $\leq k$ sources.
3. The underlying Bayesian DAG is sufficiently sparse - The algorithm works if $n \geq(\Delta+1)^{4} N_{\mathrm{mp}}$

Milder requirements exist for specific graphs.
5. The resulting product mixtures are non-degenerate
6. The DAG structure \mathcal{G} is known.

- Upcoming work on how to do causal discovery to learn \mathcal{G}

Alignment of Source Labels

Alignment Variables

Changing the Conditioned Values
Varying the Independent Set

Run $a:$| $U^{(a)}$ | $\mathcal{P}_{u^{(a)}}\left(X_{1}\right)$ | $\mathcal{P}_{u^{(a)}}\left(X_{2}\right)$ |
| :---: | :---: | :---: |
| 0 | .7 | .4 |
| 1 | .3 | .6 |

Run $b:$| $U^{(b)}$ | $\mathcal{P}_{u^{(b)}}\left(X_{1}\right)$ | $\mathcal{P}_{u^{(b)}}\left(X_{3}\right)$ |
| :---: | :---: | :---: |
| 0 | .3 | .2 |
| 1 | .7 | .8 |

Combined:

- Runs a and b are aligned at X_{1}, allowing $U^{(a)}$ and $U^{(b)}$ to be aligned - To ensure we have a "good collection of runs," any two runs must be alignable via a chain of alignment variables - i.e. we must have an alignment spanning tree.

Change the assignments to Markov boundaries while leaving at least one assignment the same.

Markov boundaries ensure that a single variable can be swapped without requiring others in the independent set to be conditioned on.
Bayesian Unzipping: $\operatorname{Pr}(V \mid \mathbf{M B}(V)) \rightarrow \operatorname{Pr}(V \mid \mathbf{P A}(V))$

Let y^{0} denote ${ }^{`} \quad y=0$ " and y^{1} denote ${ }^{`} \quad y=1$

$$
\mathcal{P}_{u}\left(y^{1} \mid \mathrm{mb}(Y)\right)=\frac{\mathcal{P}_{u}\left(y^{1}, \mathrm{mb}(Y)\right)}{\mathcal{P}_{u}\left(y^{1}, \mathrm{mb}(Y)\right)+\mathcal{P}_{u}\left(y^{0}, \mathrm{mb}(Y)\right)}
$$

We apply the standard factoring,
$\mathcal{P}_{u}(y, \mathbf{m b}(Y))=\mathcal{P}_{u}\left(v_{1}, v_{2}, v_{3}\right) \mathcal{P}_{u}\left(y \mid v_{1}, v_{2}\right) \mathcal{P}_{u}\left(v_{4} \mid y, v_{3}\right) \mathcal{P}_{u}\left(v_{5} \mid y, v_{4}\right)$,
to all three terms.
$\mathcal{P}_{u}\left(y^{1} \mid \operatorname{mb}(Y)\right)=\frac{\mathcal{P}_{u}\left(y^{1} \mid v_{1}, v_{2}\right) \mathcal{P}_{u}\left(v_{4} \mid y^{1}, v_{3}\right) \mathcal{P}_{u}\left(v_{5} \mid y^{1}, v_{4}\right)}{\left.\mathcal{P}_{u}\left(y^{1} \mid v_{1}, v_{2}\right) \mathcal{P}_{u}\left(v_{4} \mid y^{1}, v_{3}\right) \mathcal{P}_{u}\left(v_{5} \mid y^{1}, v_{4}\right)\right)+\mathcal{P}_{u}\left(y^{0} \mid v_{1}, v_{2}\right) \mathcal{P}_{u}\left(v_{4} \mid y^{0}, v_{3}\right) \mathcal{P}_{u}\left(v_{5} \mid y^{0}, v_{4}\right)}$

- $\mathcal{P}_{u}\left(v_{1}, v_{2}, v_{3}\right)$ appears in both numerator and denominator, so it cancels out
- If we traverse in reverse topological order, then $\mathcal{P}_{u}\left(v_{4} \mid y, v_{3}\right)$ and $\mathcal{P}_{u}\left(v_{5} \mid y, v_{4}\right)$ terms are previously calculated for both $y \in\left\{y^{0}, y^{1}\right\}$
- $\mathcal{P}_{u}\left(y^{0} \mid v_{1}, v_{2}\right)+\mathcal{P}_{u}\left(y^{1} \mid v_{1}, v_{2}\right)=1$, so we can solve for green terms.
- Iterating this process incurs instability proportional to the depth of the graph.
-This can be avoided by not conditioning on the children of the deepest variables in the independent set.

Anandkumar, A., D. J. Hsu, and S. M. Kakade (2012). "A Method of Moments for Mixture Models and Hidden Markov Models" In. Proc. 25th Ann. Conf. on Learning Theory - COLT. Vol. 23. JMLR Proceedings, pp. 33.1-33.34. URL: http://proceedings .mlr Proc. 25th Ann. Conf. on Learning Theory - COLT
press/v23/anandkumar12/anandkumar12. pdf. press/v23/anandkumar 12/anandkumar12.pdf
Amour, Alexander (2019). "Comment: Reflections on the deconfounder". In: Journal of the American Statistical Association 114.528, pp. 1597-1601.
2009. " "Identifiability of parameters in latent structure models with many observed variables". In: Ann. Statist. 37.6A, pp. 3099-3132. DOI: 10.1214/09-AOS689.

Gordon S. L et al. (2021) " "Source Identification for Mixtures of Product Distributions" In. Proc. 34th Ann Conf on Learning Theory Gordon, S. L. et al. (2021). "'Source Identification for Mixtures of Product Distributions". In: Proc. 34th Ann. Conf. on Learning Theory - COLT. Vol. 134. Proc. Machine Learning Research. PMLR, pp. 2193-2216. URL: http://proceedings . mlr . press/v134/ gordon21a.html.
Ogburn, Elizabeth L, llya Shpitser, and Eric J Tchetgen Tchetgen (2019). "Comment on "blessings of multiple causes"". In: Journal of the American Statistical Association 114.528, pp. 1611-1615

Causes". In: Journal of the American Statistical Association 114.528, pp. 1574-1596. DOI: 10.1080/01621459.2019.1686987.

