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Setup Task Motivation Previous Work
, . . . .
T ’ * Setting emerges when combining multiple. e independent varabs and farger 2lphabets (i
= The marginal probability distribution on V: —Eopoulahonst " ’ " '
-Environments < observed support! ] .
Pr(V) = Z Pr(u) Pr(V | u) Datasets / E. S Allmaﬁ, 2009 use algebraic methods to
well . . . , exploit within-source independence.
= Graphically, the causal relationships are considered
G unidentifiable = Anandkumar, Hsu, and Kakade, 2012 follows a
| o | o o | similar strategy using tensor decomposition.
= A Bayesian Network is a directed acyclic graph = The probability distribution on U, i.e. Pr(u) for " Interv.en.honal probab!llheg can be calculated using Wang and Blei, 2019 introduced deconfounders
(DAG) G = (V,E). we{l,... k) the within source distributions, Pr(V | u). using multiple causes.
= A Bayesian Network Distribution on n random = The within source probability distribution = Solving the mixture model allows for a degree of = Criticized in Ogburn, Shpitser, and Tchetgen, 2019 and
variables V is Markovian on Bayesian Network G. Pr(V |u) ="Py(V) forue{l,... k}. deconfounding. DAmour, 2017 | .
: . , , = P,(V) is a Bayesian network distribution, so it suffices = Criticism is linked to the difference between learning
" A k-mixture of such distributions (k-MixBND) is to find P,(V | pa(V)) for all V € V, and assignments parameters that generate similar statistics and
represented using one additional vertex U with pa(V) to PA(V). identification of the true parameters.
CH(U)=V.

L-MixBND "Confjih'oning set’ \ - MixProd
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Reduction to £-MixProd Difficulties Assumptions
= The conditional probability distribution I | COND is an instance of = k-MixProd is symmetric to permutations in the labels of U. 1. We have access to a k-MixProd oracle requiring O(k) variables that are
k-MixProd on the independent set 1. Solution: Alignment variables independent within each source.
= We will create many such instances (called "runs") and stitch together = Conditioning (via post-selection) limits the variables whose information 2. The observable variables in our BND are binary and discrete.
the results. These runs will ne.ed to: | we have access to. How can we ensure we have obtained all of the = Extensions exist for larger alphabets.
1. Cover all of the variables and assignments to their parents . necessary information? 3. The mixture is supported on < k sources.

2. Be alignable with eachother so their results can be synthesized. . . ) , , , ,
& / Solution: "Good sets of runs" and alignment spanning trees 4. The underlying Bayesian DAG is sufficiently sparse.

. . N PYAY : N : : .
Runtime of k-MixBND: n2™ executions of k-MixProd where A s 2 = The parameters returned from k-MixProd instances are of the form = The algorithm works if n > (A + 1) N

bound on the degree of G. 2 Pu(V | mb(V)) - we want them of the form P, (V | pa(V)) (which is = Milder requirements exist T‘or specific graphs.
= Runtime of k-MixProd: 20O} in Gordon et al., 2021 and standard for Bayesian networks). 5. The resulting product mixtures are non-degenerate.

Ok log(k)), O(k) in upcoming work. Solution: Bayesian unzipping 6. The DAG structure G is known.
= Upcoming work on how to do causal discovery to learn G.

Alignment Variables Changing the Conditioned Values Varying the Independent Set
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Runa: | ¢ 7 4

Default Assignment Run aq

Runb: o0 7 3 “ o % Q?D ?
: - : @ Aligned at X, (1) %
MB(X>) MB(X,) MB(X,)
U Pu(X1) | Pu(X2) | Pu(X3) Y,
Combined: 0 .7 4 3 0
11 .3 6 > %

= Runs a and b are aligned at X7, allowing U@ and UW) to be aligned.

" To ensure we have a "good collection of runs,” any two runs must be Change the assignments to Markov boundaries while leaving at least one  Disjoint Markov boundaries ensure that a single variable can be swapped

ali.gnable via a ch.ain of alignment variables - I.e. we must have an assignment the same. without requiring others in the independent set to be conditioned on.
alignment spanning tree.

0 N A 1 N N T .
Let y” denote "y = 0" and y* denote 'y =1". = P, (v1, 19, v3) appears in both numerator and

@ @ ¢ D Pu(y', mb(Y)) denominator, so it cancels out.

Puly' | mb(Y)) =

4 Pu(yt, mb(Y)) + Py(yV, mb(Y)) = |f we traverse in reverse topological order, then
7 Pulvg | y,v3) and Py (vs | y,vy) terms are previously
@ i @ \D calculated for both y € {3, y'}.

Vi We apply the standard factoring,

= Puly’ | v1,v9) + Puly! | v1,v9) =1, so we can solve

(y! | o1, v2)Pulvg | yb, v3)Pulvs |yl vg)) + PulyV | v, v9)Pulvs | 9Y, v3)Pulvs | Y, va4)

the deepest variables in the independent set.

K ” R Pu(?/; mb(Y)) — Pu@l; UQ? U?))Pu(y ‘ Ul? /02>7)U(/U4 ’ y7 UB)PU<U5 ‘ ya U4>7 ]COr green termS.
”\ /@ to all three terms. = |terating this process incurs instability proportional to
1 1 1 the depth of the graph.
| Puly | vi,v2)Pulvy |y, v3)Pulvs | ¥, v4) P sfap
@/ - Pu(y \ mb(Y>) — 7 - E L = This can be avoided by not conditioning on the children of
5 ) 4 u
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